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Abstract

Eddy covariance data from four European grassland sites are used to probabilisti-
cally invert the CARAIB dynamic vegetation model (DVM) with ten unknown param-
eters, using the DREAMzg) Markov chain Monte Carlo (MCMC) sampler. We compare
model inversions considering both homoscedastic and heteroscedastic eddy covari-
ance residual errors, with variances either fixed a priori or jointly inferred with the model
parameters. Agreements between measured and simulated data during calibration are
comparable with previous studies, with root-mean-square error (RMSE) of simulated
daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotran-
spiration (ET) ranging from 1.73t02.19gC m~2 day'1 ,1.041t01.56gC m=2 day‘1 , and
0.50to 1.28 mm day‘1, respectively. In validation, mismatches between measured and
simulated data are larger, but still with Nash—Sutcliffe efficiency scores above 0.5 for
three out of the four sites. Although measurement errors associated with eddy co-
variance data are known to be heteroscedastic, we showed that assuming a classical
linear heteroscedastic model of the residual errors in the inversion do not fully remove
heteroscedasticity. Since the employed heteroscedastic error model allows for larger
deviations between simulated and measured data as the magnitude of the measured
data increases, this error model expectedly lead to poorer data fitting compared to
inversions considering a constant variance of the residual errors. Furthermore, sam-
pling the residual error variances along with model parameters results in overall similar
model parameter posterior distributions as those obtained by fixing these variances
beforehand, while slightly improving model performance. Despite the fact that the cal-
ibrated model is generally capable of fitting the data within measurement errors, sys-
tematic bias in the model simulations are observed. These are likely due to model
inadequacies such as shortcomings in the photosynthesis modelling. Besides model
behaviour, difference between model parameter posterior distributions among the four
grassland sites are also investigated. It is shown that the marginal distributions of the
specific leaf area and characteristic mortality time parameters can be explained by site-
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specific ecophysiological characteristics. Lastly, the possibility of finding a common set
of parameters among the four experimental sites is discussed.

1 Introduction

Covering about 38 % of the European agricultural area and 8 % of the land surface
(FAO, 2011), grassland is an important land cover class in Europe which shows a wide
range of different ecological characteristics. By stocking carbon, temperate grassland
might play an important role in climate change mitigation in Europe (Soussana et al.,
2004) and at the world-scale (O’Mara, 2012). Large uncertainties however remain in
the estimation of the (source or sink) carbon fluxes since those largely depend on
farming management options.

In environmental modelling, grassland growth models have received less attention
than the long-standing and highly-developed crop models. Since grasslands are agro-
ecosystems that can be considered either as agricultural or semi-natural lands, grass-
land models were designed for two main purposes: the simulation of forage and dairy or
meat production, and the simulation of the carbon fluxes at the land—atmosphere inter-
face. Several crop models were adapted for grassland growth modelling (e.g., STICS,
Ruget et al., 2009; Dumont et al., 2014, EPIC, Williams et al., 2008) especially when
the management of the grassland remains similar to crop management, i.e., when the
grassland is a temporary forage production that is cut rather than grazed by animals.
Some other models were specifically developed for grasslands (e.g., SPACSYS, Wu
et al., 2007), sometimes coupled with animal production models (e.g., PASIM, Graux
et al., 2013), whereas grassland models were also developed from dynamic vegetation
models (DVM) such as LPJmL (Bondeau et al., 2007), adapted from the LPJ model
(Sitch et al., 2003). Being process-based models, DVM are well suited for large-scale
spatial simulations and can account for a wide range of current and projected climatic
conditions.
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To be used for simulation-based decision making, a DVM must be properly
parametrised. Model parameter values can be derived from (1) laboratory experiments
as, e.g., the stomatal conductance described by the Ball-Berry model (Ball et al.,
1987), (2) in-situ field measurements, and (3) model inversion using calibration data
measurements or (4) spatialized databases (e.g., from remote sensing). Model inver-
sion (also referred to as calibration) consists of automatically finding those model pa-
rameters that allow the model to adequately reproduce the available observed data.
Calibrated parameters are believed to be sufficiently representative due to the range of
the experimental conditions.

The collection of representative and high-quality input and output data is of
paramount importance for inversion. Global or regional DVMs require an adequate
parametrization that is sufficiently representative of the real conditions that are to be
simulated over the spatial extent of the simulation. Typically, DVMs use different set
of parameters that are assigned to specific vegetation classes that grow together over
the same area or in geographically distinct biomes. Dynamic vegetation model inver-
sion needs a sufficient number of sites with varying ecophysiological conditions that
are supposed to be representative of the considered vegetation classes or biomes, but
still well-delimited (Knorr and Kattge, 2005). Model inversion using continuous, gridded
data (e.g., from remote sensing, Patenaude et al., 2008) could also help in determining
optimal parameters for large areas, but computation time can be a limiting factor for
such application.

Given the high number of eddy covariance experimental sites across the world,
eddy covariance measurements are particularly appealing for inversion of DVM models
(Friend et al., 2007). Furthermore, the long-standing rise in computational resources
not only increased modelling capabilities in terms of temporal and spatial resolution,
but also opened new avenues for quantifying the uncertainty associated with the esti-
mated model parameters and its effect on model simulations. In particular, the Bayesian
framework for inverse modelling is increasingly used in the DVM community (e.g., Har-
tig et al., 2012). Bayesian methods such as Markov chain Monte Carlo (MCMC) sam-
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pling aim to derive a representative set of all parameter combinations that are consis-
tent with the observed data and available prior information. This set of parameters is
referred to as the posterior distribution. Eddy covariance data are known to be associ-
ated with relatively large measurement errors. It is crucial to account for these output
data uncertainties in the inversion since an improper statistical treatment can cause the
parameter posterior distribution to be strongly biased (e.g., Fox et al., 2009). Quantify-
ing eddy covariance measurement errors is not straight-forward (Lasslop et al., 2008;
Aubinet et al., 2012), but these are typically found to have a variance that is function of
the magnitude of the data, i.e., to show heteroscedasticity (e.g., Lasslop et al., 2008).

In this study, data from eddy covariance stations over four grassland sites are in-
verted for the CARAIB dynamic vegetation model parameters within a Bayesian frame-
work. This is both the first automatic calibration of the CARAIB model and its first
application to managed grassland modelling, which required adaptations of the model
to grass cutting and grazing. The main objective is to evaluate the modelling of the car-
bon and water fluxes over the four grassland sites using inversion of eddy covariance
data. We do so, using different ways of treating the uncertainties associated with the
eddy covariance data during the inversion. Both homoscedastic and heteroscedastic
residual error models are considered, either fixed beforehand of sampled along with
the model parameters. A second objective is then to compare and discuss the pos-
terior parameter distributions obtained for the four grassland experimental sites, given
their climatic, ecological and management characteristics. This cross-site comparison
aims at evaluating the possibility of finding a common set of parameters among the
four sites and to discuss the representativeness of the parameters.
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2 Materials and methods
2.1 The CARAIB model
2.1.1 Description of the model

CARAIB is a physically-based dynamic vegetation model that was developed for the
simulation of the carbon cycle at the global scale (Warnant et al., 1994; Nemry et al.,
1996; Otto et al., 2002). It calculates the carbon fluxes through the soil-vegetation—
atmosphere continuum by simulating eco-physiological processes: photosynthesis,
carbon allocation to plant pools and autotrophic and heterotrophic respiration. The
CARAIB model has been used in numerous paleoclimatology, vegetation and crop
modelling studies. The reader is referred to the aforementioned references for full
model description.

For C3 plants, photosynthesis is computed according the model of Farquhar et al.
(1980). The stomatal conductance governing the flux of CO, through the stomata is
described at the leaf scale with the Ball-Berry approach (Ball et al., 1987), using the
model of Leuning (1995) with further adaptations from Van Wijk et al. (2000) for ac-
counting for soil water stress affecting the stomatal conductance. Photosynthesis and
respiration processes are computed at a two-hour time step on a half-day basis and
the model assumes a symmetry with respect to solar noon time, that is, computation of
these processes are made for half the day and further aggregated at a daily time step.
Other processes, e.g., related to soil hydrology or carbon allocation, are computed on
a daily basis.

In this study, a single plant functional type (PFT) is considered (BAG 22 as defined in
Laurent et al., 2004, 2008) corresponding to the flora that can be encountered in Euro-
pean grasslands, i.e., species of Poaceae and Asteraceae. The model was adapted for
simulating the grassland sites by adding management functions for grass cutting and
grazing. Grass cutting is modelled by the removal of a part of the plant carbon mass so
that the model matches given values of leaf area index after cutting. Grazing is mod-
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elled such as a given fraction of the plant carbon mass is removed every day according
to the grazing charge. The dates of the grass cutting and the duration of the grazing
periods were known and fixed in the simulations. Daily meteorological data recorded at
the experimental sites were used in the model, i.e., minimal and maximal temperature,
precipitation, solar radiation, relative air humidity and wind velocity. Although they can
affect vegetation modelling (Gottschalk et al., 2007; Rivington et al., 2006; Zhao et al.,
2012), uncertainties in the meteorological data were not considered in this study.
Thirty-three parameters per PFT are set in CARAIB. These parameters govern pho-
tosynthesis, plant physiology process (e.g., specific leaf area, carbon-to-nitrogen ratio),
allocation of carbon and residence times in the different pools of carbon including plants
and soil pools, land surface—atmosphere interactions (albedo, roughness length) and
tolerance to extreme conditions (thresholds and response times). During the model de-
velopment, parameter values in CARAIB were mainly found in the literature (Warnant,
1999) and further compared with observed values (remote sensing, field data and pa-
leorecords). So far, no model inversions were performed with the CARAIB model.

2.1.2 Choice of parameters

In this study, ten model parameters were sampled (Table 2). They were chosen accord-
ing to their presupposed importance, that is, the model sensitivity to these parameters,
and because some parameters values were already known in the measured data from
the experimental sites. Default values that were defined during the model development
and used in previous researches are given in Table 2. These parameters governs the
main processes of the model, namely, the photosynthesis, the respiration and carbon
transfer between carbon pools:

— The slope g1 and the intercept g0 [umolm'2 s‘1] of the stomatal conductance
as described in Leuning (1995) are directly related to the photosynthesis since
they govern the stomatal conductance. They are thus related to the gross primary
productivity (GPP) and evapotranspiration (ET) with respect to the meteorological
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conditions. While most of ecological models, including CARAIB, use an empirical
approach for stomatal conductance derived from the Ball-Berry model, Medlyn
et al. (2011) recently reconcile the empirical approach with the theoretical back-
ground based on the optimal stomatal behaviour (Farquhar et al., 1980), which
states that there is a trade-off for stomata between maximizing carbon gain (pho-
tosynthesis) and minimizing water loss (transpiration). These new developments
in the theoretical understanding of the empirical relationship push forward the
necessity to measure or calibrate the stomatal conductance parameters under
different environmental conditions. Although single values of these parameters
are used for regional or global modelling of C3 plants photosynthesis (e.g., Sitch
et al., 2008), it is actually known that stomatal conductance parameters should
vary through time and space according to the environmental conditions and plant
species.

The specific leaf area (SLA) [m2 (g C)'1] is defined in CARAIB as the leaf area per
unit of carbon mass of the plants. It is used in the model to convert the assimilated
mass of carbon into leaf area index. Besides its role in the model, SLA is often
studied as a plant trait that is used for predicting the plant resource use strategy or
for clustering plants species into functional groups. Maximizing the photosynthesis
while minimizing leaf respiration, high SLA leaves (thin leaves) are productive, but
also more vulnerable and short-lived (Wilson et al., 1999). They are thus better
adapted to resource-rich environment, where leaves can be quickly reconstructed
(Poorter and De Jong, 1999). At the other side, low SLA leaves (thick leaves) are
often encountered in drought-adapted (Marcelis et al., 1998) or shade-tolerant
species (Evans and Poorter, 2001) and for the lower, self-shaded leaves of a plant.
SLA is also known to vary along the season and according to the leaf age (Wilson
et al., 1999). Nevertheless, the concept of SLA is sometimes problematic for some
plant species with complex plant geometry (Vile et al., 2005), e.g., highly folded
leaves, or with a non-negligible part of the photosynthetic tissues standing on the
stem, as encountered among the Poaceae species. In these simulations, SLA
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is defined for the PFT that is supposed to represent European grasslands and
therefore, it should be actually considered as an effective parameter among the
grassland species and for the whole plant body.

— The characteristic mortality time [year] of the plant in normal 7 and in stress con-
ditions 74 are, respectively, the characteristic time for the renewal of the plant (7)
and the time it takes to the plant to die in stress conditions (7). The stress con-
ditions occur when temperatures reach either low or high extreme values, for soil
water content below a certain threshold or for low irradiance values. The default
values were 0.667 year for 7, meaning a renewal of the plant by 8 months, and
0.083year for 75, meaning a characteristic mortality time in stress conditions of
one month.

— Two carbon-to-nitrogen ratio are defined for the photosynthetic active carbon pool
of the plant (C/N1) and for the remainder of the plant (C/N2). The nitrogen con-
tent of the leaves play a crucial role in the photosynthesis and increasing nitrogen
content (decreasing C/N) fosters photosynthetic activity. Low C/N ratio in plant
usually comes together with high nitrogen content in soils, that is, a resource-rich
environment.

— Three parameters govern the soil heterotrophic respiration: the fraction of the
carbon transfer to the “green litter” y1 and to the “not-green litter” y2 and the
fraction of the transfer to the soil organic carbon y3.

2.2 Experimental sites and context

In this study, we focus on four long-term experimental sites (see Table 1) that are semi-
natural permanent grasslands: Grillenburg, Germany, (Prescher et al., 2010); Oensin-
gen (intensive), Switzerland (Ammann et al., 2007); Monte-Bondone, Italy, (Wohlfahrt
et al., 2008) and Laqueuille (extensive), France, (Klumpp et al., 2011). The four sites
pertain to the global FLUXNET network and, as such, a large number of studies
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were conducted using eddy covariance data from these sites. The FLUXNET website
(http:/fluxnet.ornl.gov/) provides lists of references per site.

The four sites are located in western and central Europe and experience different
climate, altitude, soil and management conditions. They can be classified according to
the De Martonne-Gottman aridity index, which is inversely related with the site arid-
ity. Oensingen is the most intensively managed site and the only one that is fertilized
(about 200 kgN ha™" yr_1). The other three sites are extensively managed, with no or-
ganic nor mineral fertilization. The last two sites are mid-mountainous grassland, while
the first two sites are situated at a lower altitude. Only the grassland in Laqueuille is
grazed by animals during the growing season, while the other three are hay meadows
that are cut once or several times a year. Note that, although grass cutting should have
occurred on the 13 June 2005 in Grillenburg according to the given management data,
it was not observed in the measured eddy covariance fluxes because of gap-filling of
missing data. As a result, this cut was neglected in the modelling.

The four grasslands considered in this study are equipped with eddy covariance sta-
tions for measuring ecosystem fluxes. Data of flux measurement and field datasets
were made available through a coordinated task of the FACCE/MACSUR knowledge
hub, which aims at performing an intercomparison of grassland models (Ma et al.,
2014) by running several grassland model with the same field datasets collected un-
der various climatic and management conditions. Field datasets hold the necessary
information for feeding the grassland model: hourly meteorological records of climatic
variables, soil physical parameters, management information such as cutting dates or
grazing charges, and initial conditions.

2.3 Eddy covariance data
2.3.1 Choice of eddy covariance data

Data from eddy covariance stations included net ecosystem exchange (NEE)
[ng'2 day'1], gross primary productivity (GPP) [ng'2 day'1], ecosystem respira-

1800

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/1791/2015/bgd-12-1791-2015-print.pdf
http://www.biogeosciences-discuss.net/12/1791/2015/bgd-12-1791-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://fluxnet.ornl.gov/

10

15

20

25

tion (RECO) [ng_2 day‘1] and evapotranspiration (ET) [mm day‘1]. It is worth noting
that only the NEE and ET are directly measured by the eddy covariance station (i.e.,
fluxes of CO, and H,O, respectively) and that GPP and RECO are derived from these
measurements. In this study, we decided to use the GPP, RECO and ET measure-
ments in the inverse modelling. Adding NEE measurements would be useless as they
are directly linked to GPP and RECO. The GPP and RECO were used since they are di-
rectly linked with the photosynthesis and respiration processes, respectively, while the
influence of these two processes is mixed in the NEE measurements. Other combina-
tions including the NEE were first tested but it resulted in poorer agreements between
measured and modelled data.

2.3.2 Uncertainties in eddy covariance data

The eddy covariance flux data are subject to numerous sources of uncertainties, imply-
ing both systematic and random errors. We refer to the book of Aubinet et al. (2012),
chapter 7, for a comprehensive description of all sources of uncertainties associated
with eddy covariance measurements. As eddy covariance data are the result of a long
process chain, they can be affected by instrumental measurement error (e.g., calibra-
tion and design errors), sampling errors due to the variability of the fluxes in time and
space and data treatment error (e.g., due to the gap-filling of missing data). The full
data range including gap-filled data was used, since these data are gap-filled accord-
ing specific protocols that are standards in the eddy covariance community. Uncertain-
ties in eddy covariance data is strongly dependent on the time resolution of the fluxes,
tending to diminish with time aggregation (Richardson and Hollinger, 2005).

Several studies attempted to characterize the random uncertainties of eddy covari-
ance fluxes (Hollinger and Richardson, 2005; Lasslop et al., 2008). For a synthetic daily
NEE data inversion experiment, Fox et al. (2009) used an homoscedastic and uncorre-
lated Gaussian noise with ¢ = 0.Sng‘2 day‘1. However, the random uncertainty of
eddy covariance flux measurements has been found to show heteroscedasticity with
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measurement error variance proportional to the magnitude of the flux (Lasslop et al.,
2008). It has thus been suggested (Richardson et al., 2008) that the measurement
error variance can be modelled as a linear function of the magnitude of the flux with
a non-null intercept, as random uncertainties are non-null even when the flux equals
zero. While the random error can be taken into account in the likelihood function, sys-
tematic measurement errors can only be removed by instrument calibration. Therefore,
they cannot be treated in this study.

2.4 Probabilistic inversion methodology
2.4.1 Inverse problem

To acknowledge that measurements and modelling errors are inevitable, the inverse
problem is commonly represented by the stochastic relationship

F(z)=d +e, (1)

where F is a deterministic, error-free forward model that expresses the relation be-
tween the uncertain parameters z and the measurement data d, and the noise term e
lumps measurement and model errors.

Inversions were performed within a Bayesian framework, which treats the unknown
model parameters z as random variables with posterior probability density function
(pdf) p(z|d) given by

p(2)p(d|z)
p(d)

where p(z) denotes the prior distribution of z and L (z|d) = p(d|z) signifies the likelihood

function of z. The normalization factor p(d) = [ p(z)p(d|z)dz is obtained from numerical

integration over the parameter space so that p(z|d) scales to unity. The quantity p(d)

is generally difficult to estimate in practice but is not required for parameter inference.
1802
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In the remainder of this study, we will focus on the unnormalized posterior p(z|d) o

Z)L(z|d). For numerical stability, it is often preferable to work with the log-likelihood
function, £(z|d), instead of L(z|d). If we assume the error e to be normally distributed,
uncorrelated and with unknown constant variance, 02, the log-likelihood function can
be written as

e(z|d) = —ﬂlog(zm——lom 2)—2—Z[d - F(2)P, (3)
i=1

where o can be fixed beforehand or sampled jointly with the other model parameters
Z.

The homoscedasticity (i.e., constant variance) assumption for e may be excessively
strong in many cases. Considering the residual errors, e, to be heteroscedastic, Eq. (3)
becomes

2(zld) = ——Iog(21r ZIog z[d Fz)] (4)

where the o; are the individual residual error SD, that can be gathered into a vector o.
Here also, o can either be fixed beforehand or sampled along with z (see further).

2.4.2 Multi-objective likelihood function

In this work, we chose three types of eddy covariance data for the calibration: d (GPP),
d, (RECO) and d; (ET). We further assume that the corresponding residual errors,
e,, e, and e;, are uncorrelated, leading to the following multi-objective log-likelihood
function

0(zld,3) = €(2|d¢) + €(2|d,) + €(2|d ). (5)
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The weighting between the three components of £(z|d, , 3) is an important issue.
The constant (o) and non-constant (o;) SD in Egs. (3) and (4), respectively, basi-
cally weight the respective influences of e, e, and e; on the log-likelihood defined by
Eq. (5). Distinct homoscedastic or heteroscedastic residual error models must be spec-
ified for e4, @, and e3. This was done for both the homoscedastic and heteroscedastic
cases either by specifying the residual error SD beforehand, or by jointly inferring these
SD along with the model parameters.

2.4.3 Homoscedastic and heteroscedastic error models

Based on prior knowledge of the measurement errors, the homoscedasticity assump-
tion simply reduces to assigning values to o4, 0, and o3 in Egs. (3) and (5). These
values were fixed to Sng'2 day‘1 for the GPP measurements, 1.Sng‘2 day'1 for
the RECO measurements and 1 mm for the ET measurements. As stated earlier, mea-
surement errors associated with eddy covariance fluxes are however typically found
to be heteroscedastic, with a variance that is assumed to be linearly related to the
magnitude of the measured data (Richardson et al., 2008)

1 a;
Og,i = 500, §+1 : (6)

where the variable d denotes either GPP, RECO or ET measurements, / = 1,---,N are
measurement times, and gy, 4 is equivalent to o4, o,, or o3 in the homoscedastic case.
We refer to the inversions based on these homoscedastic and heteroscedastic error
models as HO1 and HE1, respectively. It is worth noting that by fixing the SD to known
measurement errors, one implicitly assumes that the model is able to describe the ob-
served system up to the observation errors. This might not be realistic in environmental
modelling where models are always fairly simplified descriptions of a much more com-
plex reality.
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2.4.4 Joint inference of the homoscedastic and heteroscedastic error model
parameters

Still under the Gaussianity assumption, a more advanced treatment of the residual
error models considers simultaneous inference of the SD with the model parameters,
i.e., considering the SD of the residual errors as unknowns. Doing so assumes that
residual errors are expected to be a mixture of both model (equations and inputs)
and observational errors. For the homoscedastic case, this simply consists of jointly

sampling o, 0, and o5 along with the model parameters, z.

The heteroscedastic error model then becomes
Ud,/ = ad/ + b, (7)
where the a and b coefficients are to be jointly inferred with z from the measurement

data. Using Eq. (7) thus leads to the addition of 6 variables to the sampling problem:
a,, ap, as, by, b, and bs. We refer to the joint inversions of these homoscedastic
and heteroscedastic error models as HO2 and HE2, respectively. In these inversions,
a total predictive uncertainty around the model output can be computed by adding to
the modelled data a random noise drawn from a normal distribution with mean zero
and SD o sampled from its posterior distribution (HO2) or computed by Eq. (7) (HE2).

Simultaneous inference of model parameters with homoscedastic or heteroscedastic
error model parameters requires the definition of their prior probability distributions.
Based on the available prior information, uniform (flat) priors are used for the 10 model
parameters contained in z (see Table 2). We follow two guidelines for specifying the
prior densities of the error model parameters. First, we would like to obtain posterior
SD as small as possible within the range permitted by the model and measurement
data errors in order to get the lowest possible data misfits. Second, the magnitudes
of the different prior distributions should reflect the desired weights of the different
data types within the multi-objective inference. These weights translate the modeller’s
relative preferences among the three modelling objectives in Eq. (5). We therefore use
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normal distributions with mean zero truncated at zero to avoid negative values. The
prescribed weights then correspond to the different SD of these normal distributions

X - X -
pX) = ¢( “X)occp(ﬂ), @®)

" oxB Oy Oy

where the X variable is either o;, a; or b/- for j =1,2,3, the value of oy expresses
the modeller’s preference for objective j compared to the other objectives (the smaller
oy, the larger the relative weight of objective j), ¢(-) signifies the probability density
function of the standard normal distribution, iy is set to zero for maximizing the prior
density of X towards small values, and the constant B depends on the lower, v, and
upper, w, limits of the truncation interval

B=¢(W_”X)—¢(V_”X), 9)

Ox Ox

in which d(-) denotes the cumulative distribution function of the standard normal distri-
bution.

This treatment of multi-objective Bayesian inference is in line with the work of Re-
ichert and Schuwirth (2012), who further considered different statistical models for
model and observation errors. Table 2 lists the prior types and ranges used for all
sampled parameters. The ranges of the parameters were set using boundary values
that correspond at least to the lower and upper physically-possible bounds of the pa-
rameters, or to narrower bounds using expert-knowledge.

Overall, this resulted in four different ways of treating the eddy covariance data un-
certainties: fixed homoscedastic (HO1) and heteroscedastic (HE1) error models, and
jointly inferred homoscedastic (HO2) and heteroscedastic (HE2) error models.

2.4.5 Markov chain Monte Carlo sampling

The goal of the inference is to estimate the posterior distribution p(z|d) where the 10,
13 or 16-dimensional z vector contains all sampled parameters, and d signifies the
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conditioning data: d = {d1,2,3} herein. As an exact analytical solution of p(z|d) is not
available, we resort to Markov chain Monte Carlo (MCMC) simulation to generate sam-
ples from this distribution. The basis of this technique is a Markov chain that generates
a random walk through the search space and iteratively finds parameter sets with sta-
ble frequencies stemming from the posterior pdf of the model parameters (see, e.g.,
Robert and Casella, 2004, for a comprehensive overview of MCMC simulation).

The MCMC sampling efficiency strongly depends on the assumed proposal distribu-
tion used to generate transitions in the Markov chain. In this work, the state-of-the-art
DREAM(ZS) (ter Braak and Vrugt, 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012) al-
gorithm is used to generate posterior samples. A detailed description of this sampling
scheme including convergence proof can be found in the cited literature and is thus not
reproduced herein.

Convergence of the MCMC sampling to the posterior distribution is monitored by
means of the potential scale reduction factor of Gelman and Rubin (1992), A. This
statistic compares for each parameter of interest the average within-chain variance
to the variance of all the chains mixed together. The smaller the difference between
these two variances, the closer to 1 the value of the B diagnostic. Values of R smaller
than 1.2 are commonly deemed to indicate convergence to a stationary distribution. In
this study, posterior distributions of the parameters were drawn from the point where
all parameters achieved R < 1.2. This is more conservative than conventional practice
of stopping the inference when R < 1.2 for every parameter. The mean acceptance
rate of the proposed samples, AR (%), is an important sampling property and is thus
also reported. An excessively small fraction of accepted candidate points indicates
poor mixing of the chains due to a too wide proposal distribution. In contrast, a very
large acceptance rate signals a too narrow proposal distribution causing the chains to
remain in close vicinity of their current locations. The optimal value for AR depends on
the proposal and target distributions, but a range of 10—-30 % generally indicates good
performance of DREAM gg,.
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3 Results
3.1 Parameter estimation
3.1.1 Parameter samplings and convergence of the algorithm

The DREAM g, algorithm was run with four parallel chains, initialized by sampling the
prior parameter distribution (Table 2). As an example, Fig. 1 shows sampling trajecto-
ries of DREAMzs) parametrised with four chains, for the SLA parameter and inversion

HO1 at the Oensingen site. The R convergence statistic becomes < 1.2 for each pa-
rameter after about 20 000 forward model runs and the AR over the last 50 % model
evaluations is about 18 %. Overall, convergence was achieved for all MCMC trials after
some 15000-30 000 forward runs with AR values in the range 10-30 %, except for the
inversions associated with the Laqueuille site that showed AR values as low as 5 %.

3.1.2 Posterior parameter distributions

Figure 2 presents marginal posterior histograms of the 10 parameters for all experi-
mental sites, considering the inferred homoscedastic error model (inversion HO2). In
the remainder of this document, results are mainly detailed for this inversion scenario,
because it generally led to the lowest data misfits while inversions HE1 and HE2 did
not fully removed heteroscedasticity (see further). For some parameters (e.g., SLA and
C/N1), the marginal posterior distributions are narrow compared to the prior parameter
range. This indicates a large sensitivity of the model to the considered parameter. In
contrast, some other parameters such as y2 are poorly resolved, demonstrating a rel-
ative insensitivity. Asymmetric edge-hitting distributions are also observed such as for
C/N1 and C/N2 in Monte-Bondone. In a Bayesian inversion of eddy covariance data
obtained from a forest site, Braswell et al. (2005) found that 7 out of 26 marginal param-
eter distributions were edge-hitting. Extending the prior parameter ranges would lead
herein to unphysical or unplausible parameter values. Edge-hitting distributions reveal
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model inadequacies and/or large systematic measurements errors. For some parame-
ters, posterior distributions were rather distinct from the default values that were used in
previous studies (Table 2), such as high g1 values. Values of the characteristic mortality
time 7 also generally increased compared to the default value.

Table 3 shows for the four experimental sites the most likely parameter values,
which resulted in the highest values of the log-likelihood function. Some of the pa-
rameters present contrasting values between inversion scenarios and/or experimental
sites, which may be related to the different ecological characteristics of the sites as
discussed in Sect. 4.3. Depending on the width of the posterior distributions, the most
likely parameter values are well resolved or largely uncertain. As a result, compari-
son between the experimental sites must account for the posterior distributions of the
parameters.

3.2 Measured and modelled carbon and water fluxes with calibration data
3.2.1 Measured and modelled data in Monte-Bondone

As the parameters sampling resulted in posterior distributions of the parameters in-
stead of single values, ensembles of posterior modelled signals can be represented.
In Fig. 3, measured and modelled eddy covariance data are depicted for the exper-
imental site of Monte-Bondone, for inversions with the inferred homoscedastic error
model (inversion HO2). The posterior ranges of the modelled signals are represented
by the dark grey shaded areas for the prediction uncertainty due to parameter uncer-
tainties and by the light grey shaded areas for the total predictive uncertainty (at 95 %
confidence interval). This total prediction uncertainty is computed using the SD of the
residual errors ¢ as sampled by the inversions. The site of Monte-Bondone was cho-
sen here since there is one single cut a year (indicated by the vertical arrows) that is
clearly identifiable, which facilitates the interpretation of the fluxes. The dates of cutting
corresponded to a sudden drop in the GPP in the middle of the year, that was followed
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by a gradual increase. They were also observed in the NEE graphs with a sudden
increase in the NEE.

There were overall good agreements between measured and modelled signals. It is
worth noting that the posterior ranges of modelled data were not constant over time
and were not related to the magnitude of the signals. The ranges due to parameter
uncertainties were relatively small and did not encompass the measured data. Overall,
it could be observed that measured eddy covariance data have a stronger kinetic than
the modelled signals, meaning that the CARAIB model cannot follow the fast fluctua-
tions of the GPP (and other signals) over time. In particular, the model could not well
simulate the highest peaks of GPP.

3.2.2 Measured and modelled data across sites

Considering the other three experimental sites (Fig. 4), there were similar agreements
between measured and modelled signals, although the sites displayed different be-
haviour in terms of GPP as their management is varying: there are several cuts per
year in Grillenburg and Oensingen, while Laqueuille is a grazed meadow. In general,
the peaks of GPP cannot be well simulated by the model. The modelled GPP seemed
averaged out as compared to the measured signals, as observed before in Monte-
Bondone (Fig. 3a).

All the graphical comparisons between measured and modelled signals could not
be shown, but are summarized in Table 4 for the homoscedastic and heteroscedas-
tic cases, and with fixed and inferred error model, using the root mean square error
(RMSE), the R? and the Nash and Sutcliffe (1970) model efficiency criterion (E) be-
tween measured and modelled signals. The latter criterion takes values from —oo to 1.
A value of 1 means a perfect match between measurements and model simulations,
a value of 0 indicates that the mean of the observed data is as accurate as the the
modelled values, and an efficiency less than 0 occurs when occurs when the mean of
the observed data reproduces the observations better than the modelled values. The
maximum log-likelihood value ml that was obtained by the algorithm is also indicated.
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Note that performance criteria were also computed for the NEE, although these data
were not used in the model inversions. Overall, the best agreements were found for
the Monte-Bondone site, and the worst for the Laqueuille site. The lowest model effi-
ciencies E were found for the NEE, which is not surprising since these data were not
accounted for in the model inversions. While the ml values were generally the highest
for the heteroscedastic inversions HE2, RMSE appeared larger for these inversions.

3.2.3 Homoscedastic and heteroscedastic eddy covariance residual errors

Considering homoscedastic or heteroscedastic residual eddy covariance residual er-
rors resulted in different sampling of posterior distributions of parameters, and there-
fore, different posterior modelled signals of the model. As an example, Fig. 5 shows the
measured and modelled GPP with their posterior ranges for the site of Monte-Bondone
in 2004, for both homoscedastic (Fig. 5a and c) and heteroscedastic (Fig. 5b and d)
cases. For the HO2 and HEZ2 inversions, the 95 % total predictive uncertainty is de-
picted using the light grey shaded areas. The measurement uncertainty is depicted
only for fixed eddy covariance residual errors inversions (Fig. 5a and b) for clarity.
The measurement uncertainty is thus constant for the homoscedastic case (namely,
:b3ng_2day_1 for HO1) while it varies linearly according to the GPP for the het-
eroscedastic case (HE1). This two options led to different behaviours of the modelled
GPP using the posterior distributions, which better approached the high values of the
measured data (in summer) in the homoscedastic cases and better fit the low values (in
winter) in the heteroscedastic cases. Overall, modelled signals with parameters values
from the homoscedastic inversions were in a better agreement with the measured data
than with the parameters from the heteroscedastic inversions. The same observation
was also made for the other sites (not shown). The standardised residuals, that were
computed as the difference between measured and modelled data divided by the SD of
the residual error, are depicted in Fig. 5 at the right of the GPP graphs. Heteroscedas-
ticity in the GPP was not really removed considering the heteroscedastic residual eddy
covariance data error models, neither in HE1 or HE2, since standardised residuals still
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showed heteroscedasticity. Partial autocorrelation of the residuals of the GPP were
also depicted and independence between the days of simulation was reached after
a few days.

3.2.4 Sampling of the SD of the residual errors

Inversions with the sampling of the SDs of the residual errors resulted in posterior
distributions of the SD of the residual errors (HO2) and parameters of Eq. (7) (HE2).
Most likely values of these distributions (Table 5) were depending on the experimental
sites, being larger for Laqueuille and Oensingen, which can be related to the poorer
agreements between measured and modelled data in these sites. Although the sam-
pled SD of the residual errors were lower than in the fixed inversions, there were no
large differences between the inversions with fixed model errors (HO1 and HE1) and
inversions with inferred model errors (HO2 and HE2) in terms of agreement between
measured and modelled signals (see Fig. 5 and Table 4) or in the posterior distributions
of parameters (Table 3).

3.3 Model validation

Most likely parameters values were used to validate the model inversion at the four
experimental sites over longer periods. Table 6 summarizes the comparison between
measured and modelled data over the periods of validation only (which were spec-
ified in Table 1), with most-likely parameter values from the inferred homoscedastic
error model (inversion HO2). All the indicators showed a worse agreement between
measured and modelled data as compared to the calibration dataset, as expected. In
particular, Laqueuille showed high RSME and negative model efficiencies for the GPP
and RECO. These bad agreements in Laqueuille were related to a systematic offset
between measured and modelled GPP in a part of the validation period. All the same,
except for Laqueuille, model efficiencies were all above 0.5.
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4 Discussions
4.1 Measured and modelled signals

Bayesian inversions over the four grassland sites resulted in posterior distributions of
parameters and posterior ranges of modelled signals (GPP, RECO, ET and NEE). Con-
sidering the inversion scenario HO2, there were in general good agreements between
measured and modelled signals, with RMSE ranging from 1.73 to 2.19gCm ?day ™’
and R? between 0.74 and 0.84 in terms of GPP. Using a dedicated model for soil or-
ganic carbon dynamics, De Bruijn et al. (2012) found a R? of 0.68 for the modelling of
the NEE at the Oensingen site over the same years. Comparing three large-scale lands
surface models in simulating carbon fluxes over different ecosystems, Balzarolo et al.
(2014) noticed that grassland and crop sites were more difficult to model compared to
forest sites. Using data from 13 grassland sites over Europe including Laqueuille and
Grillenburg, they found average RMSE between measured and modelled GPP ranging
from 2.45 to 3.57ng'2 day'1 and R? from 0.37 to 0.56. These larger discrepancies
compared to our study are mainly to be related to the fact that the large-scale models
were used without site-calibrations. Modelling of carbon fluxes was also performed at
the Oensingen site over the same years in Calanca et al. (2007) using a dedicated
grassland model, PaSim. In that study, no numerical comparison between measured
and modelled data were computed at a daily resolution, but the relative departures be-
tween measured (eddy covariance) and modelled data were given by year of simulation
and were ranging from —11 to —21 % in terms of annual sum of GPP. In our study, the
annual relative departures in the annual sum of GPP in Oensingen ranged from 0.7 to
9 % with the calibration dataset and up to 63 % with the validation dataset. In a simi-
lar experiment of inversion of eddy covariance data from forest sites, Fox et al. (2009)
found RMSE between measured and modelled NEE of 0.7 and 1.3ng'2 day'1 for
two different sites in calibration and of 1.5 ng_2 day‘1 in validation. These values are
lower than in our study but the measured NEE data was not used in the model inversion
here, contrarily to the inversions in Fox et al. (2009).
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It could be observed that measured eddy covariance data have a stronger kinetic
than the modelled signals, that is, modelled signals could not follow the fast fluctua-
tions of the measured signals. This could be related to the different time resolutions
between the model and data. The CARAIB model is based on daily-averaged me-
teorological data. However, photosynthesis and respiration processes are computed
at a two-hour time step before being aggregated to a daily resolution and the model
assumes a symmetry with respect to solar noon time (Otto et al., 2002) to save compu-
tation resource. Moreover, in the CARAIB model, solar fluxes are calculated assuming
a constant cloudiness over the day and temperature is varying using a sinusoidal func-
tion between the minimal and maximal temperature, that were fixed at midnight and
noon, respectively. These shortcomings were necessary for saving computation re-
sources and in case of data scarcity for global vegetation modelling. Eddy covariance
data, however, are typically acquired at a time frequency of 5 or 10 Hz (Aubinet et al.,
2012) and can thus capture high-frequency fluxes. Even though eddy covariance data
were aggregated over time to a daily time resolution, the high-frequency acquisition
rate ensures that effects of abrupt meteorological events are recorded. Increasing the
time resolution of the CARAIB model would help to better simulate ecophysiological
processes at a high frequency. Alternatively, a simple workaround to deal with the dif-
ferent time dynamics would be to apply a filter based on a moving window of some days
in order to smooth measured (and modelled) eddy covariance data before computing
the statistical indicators, as done in Calanca et al. (2007).

In general, there were poorer agreements between measured and modelled signals
(GPP, RECO, ET and NEE) in Laqueuille compared to the other experimental sites, es-
pecially in validation. These poorer agreements can be probably related to the grazing
instead of the cutting that occurs in Laqueuille. Grazing was more difficult to simulate
because of the expert-knowledge conversion between the given cattle charge and the
biomass removal. As a result, grass cutting is better constrained in the model compared
to grazing, as it was already shown in the Laqueuille experimental site by Calanca et al.
(2007) but using the grassland model PaSim.
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All the same, besides the average statistical indicators between measured and mod-
elled signals, the performance of the calibration might be also evaluated against spe-
cific scientific or operational objectives. For instance, accurate modelling of the grass
cutting or computation of annual budgets of carbon in the grassland (e.g., Soussana
et al., 2007) might show different performances, depending on the time scale on which
the processes are analysed.

4.2 Eddy covariance residual errors
4.2.1 Homoscedastic and heteroscedastic eddy covariance residual errors

Bayesian inversions were conducted considering homoscedasticity and heteroscedas-
ticity in the eddy covariance residual errors. Figure 5 showed that accounting for het-
eroscedasticity in eddy covariance residual errors permitted to better simulate low-
values signals (winter), but at the same time, it penalized the modelling of high values
(summer). This was observed not only for the site of Monte-Bondone but also for the
other three sites (not shown). Actually, it is worth remarking that inversions considering
heteroscedastic measurement errors do not attempt to result in smaller misfits between
measured and modelled data since larger errors are considered for high peaks of the
signals. In addition, considering a linear heteroscedastic model of the residual errors
did not permit to fully remove heteroscedasticity in the standardised residuals values
(Fig. 5b and d). Other kinds of heteroscedastic models might be tested, but the residual
distribution did not show any clear trend.

Remaining systematic discrepancies between measured and modelled signals are
probably to be mainly attributed to model inadequacies, with respect to the modelling
of carbon fluxes in both winter and summer periods. A model improvement would be to
simulate varying parameter values as a function of the time of the year in order to simul-
taneously maximise the fits in winter and summer, as plant traits are actually evolving
along the seasons, but at the same time this would increase the model complexity.
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4.2.2 Sampling of the SD of residual errors

Sampling the SD of residual errors, i.e., the inversions HO2 and HE2, did not impact
a lot the other parameter samplings and the modelling, as compared to inversions HO1
and HE1, respectively. Some performance criteria were better with the sampling of the
residual SD, while other not. As expected, most likely SD of the residuals errors were
close to the RMSE obtained in the inversions HO2. These values inform about the lev-
els of the uncertainties of the eddy covariance data with respect with the model used
to invert the data, e.g., uncertainties of GPP ranged from 1.79 to 2.2990m'2 day'1,
of RECO from 1.09 to 1.6390m'2 day‘1 and of ET from 0.52 to 1.31 mm. They could
be used to weight different eddy covariance data in multi-objective inverse modelling.
Overall, while the HEZ2 inversion framework is arguably more conceptually sound, we
found that it does not permit to fully remove heteroscedasticity from the residuals
(Fig. 5) while simultaneously leading to a poorer modelling performance in terms of
fitting the large observed values (such as the summer GPP).

4.3 Parameters values across sites

Posterior distributions of parameters showed contrasting values that could be linked to
the characteristics of the experimental sites. For instance, the specific leaf area (SLA) is
known to depend on many factors (Marcelis et al., 1998) such as leaf age, temperature,
light intensity, aridity and soil nutrient content. Thick leaves (low SLA) are more adapted
to dry ecosystems due to their greater capacity to retain water. Although none of the
4 grassland sites are strictly characterized by a dry climate, it is interesting to note
that the posterior parameter distributions for SLA were negatively correlated with the
aridity, inversely expressed by the De Martonne index (Fig. 6), that is, SLA decreases
with increasing aridity. The largest SLA were found for Laqueuille, which can be related
to the permanent grazing that constantly regenerate young leaves, since young leaves
are characterised by high SLA. The large SLA values in Oensigen can be related to
the more intensive management conditions (fertilisation, more frequent cuts) that are
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encountered in that site. Thin leaves (high SLA) usually come with nutrient-rich site
where the construction cost of the leaves is relatively low. At the opposite, Grillenburg,
which has the lowest SLA, is the most arid site and is extensively managed.

Contrarily to SLA, the characteristic mortality time in stress conditions 74 appeared
to be positively correlated with the site aridity (Fig. 6). Larger 74 value means a larger
water stress resistance for the plants in Grillenburg and Monte-Bondone.

The values of g1 were drastically different between Oensingen and the three other
sites (Table 3). In addition, for these three sites, the values appeared much higher
compared to the default values (g1 = 9) and other values commonly encountered in
the literature (Van Wijk et al., 2000; Medlyn et al., 2011). It is known that g1 should
increase with humid conditions and temperature (Medlyn et al., 2011), as it is positively
related to the marginal water cost of carbon gain. However, the high values of g1 here
could not be really related to a warmer or wetter climate as compared to Oensingen.
A possible explanation could be related to the different dynamics of the model and the
measurements, as already explained hereinbefore. As the model cannot simulate the
fast dynamics of the carbon fluxes that are observed in the eddy covariance data, the
Bayesian algorithm could have compensated by sampling high values of g1.

4.4 Towards a common set of parameter among the sites

In this section, we discuss the possibility to find common sets of parameters across the
four grassland sites, which could be used for spatialized simulations with the CARAIB
model. When comparing the posterior distributions of parameters across the four grass-
land sites (Fig. 2), it appeared that most of the parameters did not share a common
posterior distributions between the four sites. Some parameters showed drastically dif-
ferent posterior distributions, especially when the model show a high sensitivity to the
parameter (narrow distributions). However, some distributions, although different, were
similar between the four experimental sites or at least between three out of the four
sites (SLA, 7, C/N1). In Wang et al. (2007), LAI, soil respiration and four photosyn-
thetic parameters were optimised at eight different eddy covariance sites and different
1817
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values were found not only between the sites, but also depending of the year for which
the model inversion was considered. These differences could be explained by the dif-
ferent ecophysiological characteristics of the sites and to the specific meteorological
conditions of the year.

If it appears that specific parameter values according to site characteristics or mete-
orological conditions are needed, it means that the model has to be refined by account-
ing ecophysiological dependence of some parameters. For instance, it has been shown
that the stomatal conductance model as defined by Ball et al. (1987) and further by Le-
uning (1995) could be improved by introducing a stomatal conductance that is function
of the soil moisture or the leaf water potential (Medlyn et al., 2011). As specific leaf
area is also dependent on several conditions such as leaf age, leaf nitrogen content,
irradiance and position in the canopy (Evans and Poorter, 2001), this parameter could
be also replaced by functions depending of these factors.

However, when the posterior distributions could be superimposed, this indicated that
common distributions or values of these parameters could be determined for all the
experimental sites. The parameters that could be generalised are supposed to be in-
variant of the site on which they were determined or even independent from the plant
species, as recently claimed by Yuan et al. (2014). Determining a common set of the
parameters distributions among the four sites could be done either by (1) merging the
four posterior distributions after independent samplings of the data of each site or (2)
merging together the eddy covariance data of the four sites in one single MCMC sam-
pling. The first option has the advantage that posterior distributions of the parameters
could be analysed for each site separately before merging them together.

5 Conclusions

Bayesian inversions of a dynamic vegetation model, CARAIB, were performed using
eddy covariance data (GPP, RECO, ET) at four experimental grassland sites. A spe-
cific version of the CARAIB model was developed for this application, with functions
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related to the grassland management, i.e., grass cutting and grazing. Bayesian inver-
sions allow to fully account for errors in the eddy covariance data and provide with
posterior distributions of parameters and a full range of posterior modelled data. Dif-
ferent options of treating the eddy covariance residual errors were tested: (1) taking
into account homoscedasticity or heteroscedasticity in eddy covariance data and (2)
investigating the sampling of the SD of the residual errors in the model inversions, that
is, considering the errors as unknowns.

There were in general good agreements between measured and modelled signals
with the calibration datasets, and poorer agreements with the validation datasets.
Among the four sites, RMSE of daily gross primary productivity (GPP), ecosys-
tem respiration (RECO) and evapotranspiration (ET) were ranging from 1.73 to
2_1gng-2 day‘1, 1.04 to 1.56 ng‘2 day‘1, and 0.50 to 1.28 mm day‘1 respectively,
considering the calibration data. As the four sites pertains to long-standing experimen-
tal sites that are equipped with eddy covariance measurements setup, comparisons
with previous studies could be made. Although eddy covariance residual errors are
characterized by heteroscedasticity, we showed that accounting for a heteroscedastic
error model for the residuals did not fully remove heteroscedasticity in the residuals
and, furthermore, it decreased the modelling performances. Inferring the SD of resid-
ual errors rather than using fixed eddy covariance residual errors values did not impact
a lot the parameter sampling and improved slightly the agreements between modelled
and measured data. Remaining discrepancies between measured and modelled data
were attributed to model inadequacies, especially regarding the small temporal reso-
lution of the photosynthetic processes in the CARAIB model. Modelling performance
varied among the four sites, with poorer performances at Laqueuille, because of the
difficulty in the modelling of the grazing rather than the grass-cutting.

Lastly, the possibility of finding a common set of parameters among the four exper-
imental sites was discussed. The results were balanced: although most of the param-
eters did not share a common posterior distribution, some did at least for three of the
four sites. In the former case, this called for further model developments in order to take
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into account the ecophysiological dependence of the parameters according to the site
and/or meteorological conditions. In the latter case, a common posterior distribution
might be drawn for the parameter. However, model inversions with data from a larger
number of sites would be required to fully address this issue.
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Table 1. Grassland sites and periods of simulations.

Coordinates Altitude Management Fertili- De Martonne-  Calibration ~ Validation

sation  Gottman index years years
Grillenburg, DE 13.50°E50.95°N  380m  cutting (1-3yr™") no 32 2004-2006 2007-2008
Oensingen, CH 773°E4728°N  450m  cutting (3-5 yr'1) yes 38 2002-2005 2006-2008
Monte-Bondone, IT  11.03°E 46.00°N  1500m cutting (1 yr") no 35 2003—-2005 2006-2007
Laqueuille, FR 273°E45.63°N 1040m grazing no 41 2004-2007 2008-2010
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Table 2. Default values and prior distributions of the 10 model parameters, and prior distribu-
tions of the statistical parameters of the homoscedastic and heteroscedastic error models. The
label U means an uniform distribution, TG signifies a zero-mean Gaussian distribution truncated
at zero to avoid negative values, and SD denotes the prescribed SD of a TG distribution.

Parameter Units Default value Prior type Range SD
Model parameters
g1 9 u [1—20] N/A*
g0 molm™2s™" 0.01 U [0.005-0.03] N/A
SLA m?(gC)~" 0.025 u [0.01-0.08] N/A
T year 0.667 u [0.5-2] N/A
T year 0.0833 u [0.01-0.5] N/A
C/N1 16 u [6—-40] N/A
C/N2 32 u [10-80] N/A
v 20 u [5—-40] N/A
y2 10 u [5—40] N/A
y3 0.2 u [0-1] N/A
Homoscedastic error model parameters (for HO2 inversions only)
Oapp gCm™2day™’ N/A TG [0,54] 9
OReCO gCm2day™’ N/A TG [0,27] 4.5
Ot mm N/A TG [0,18] 3
Heteroscedastic error model parameters (for HE2 inversions only)
agpp N/A TG [027 Yoppl 45 Ygpp
aReco N/A TG [0,13.5 - Ygecol  2.25- YReco
agr N/A TG [0,9- Yer] 1.5 Yer
bapp gCm2day™’ N/A TG [0,27] 45
breco gCm2day™’ N/A TG [0,13.5] 2.25
ber mm N/A TG [0,9] 1.5

* Not applicable.
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Table 3. Most likely CARAIB model parameters values for all inversion scenarios.

BGD
12, 1791-1838, 2015

Grillenburg  Oensingen Monte-Bondone Laqueuille

Fixed homoscedastic error model inversions (HO1)

Jaded uoissnosiq

g1 16.8 7.3 18.8 18.6
g0 [mol Zm’z s"1] 0.0265 0.00507 0.00637 0.0248
SLA[m?(@C)™"]  0.0126 0.0234 0.0155 0.0197 . . .
7 [year] 1.99 1.27 1.98 1.49 Bayesian inversions
1, [year] 0.0861 0.0526 0.0212 0.023 :
C/N1 5 6.69 5.02 5.43 — ofa dynamlc
C/N2 78.6 19.9 10.6 11 Vegetation model
%l 5.07 39.1 38.2 26.1 o
v2 5.1 39.9 38.8 36.9 7
v3 0.73 0.507 0.421 1.49e-05 2 J. Minet et al.
Fixed heteroscedastic error model inversions (HE1) $
g1 3.45 8 19.8 20 5
g0 [molm™2s7"] 0.027 0.00544 0.0297 0.0299 =]
SLA[m?(gC)™']  0.0161 0.0151 0.0142 0.0191 U
7 [year] 1.96 1.7 1.96 0.746 Q
1, [year] 0.0202 0.0687 0.0153 0.0234 8
C/N2 77.9 20.3 10.2 10
%l 8.09 39.5 31.4 38.8 —
y3 0.358 0.806 0.981 0.688 o
Inferred homoscedastic error model inversions (HO2) (%2] - -
gt 15.6 7.46 16.8 145 =
go[molm™2s™']  0.00945 0.00549 0.0258 0.0104 @
SLA[m?(gC)™"]  0.0133 0.0193 0.0142 0.0483 5 - -
T [year] 1.98 1.65 1.99 0.65 >
1, [year] 0.0682 0.0583 0.0735 0.0102 T
S s s a0 e S EN .
C/N2 77 20.2 10 52.7 8
%l 6.25 37.2 20.8 39.6 =
v 5% s 5o 258 . Back  Close
¥3 0.257 0.471 0.361 0.000272 _
Inferred heteroscedastic error model inversions (HE2) _
g1 1.3 9.4 19.8 12.7 o)
go[molm=s']  0.0276 0.00635 0.0298 0.0234 73
SLA[m?(gC)]  0.018 0.0158 0.0142 0.0797 = _
7 [year] 1.69 1.8 1.27 0.822 @
1, [year] 0.01 0.0892 0.0141 0.0104 =
C/N2 22.9 15.5 14.9 10.1 T
%l 7.83 217 20.6 385 )
y2 6.14 21.9 19.1 9.79 g}
%! 0.503 0.896 0.145 0.505 @ @ 2
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BGD
12, 1791-1838, 2015

Table 4. Comparison between measured and modelled signals using most likely parameter
values. ml is the maximum value of the log-likelihood function.

Jaded uoissnosiq

Bayesian inversions
of a dynamic

Grillenburg Oensingen Monte-Bondone Laqueuille — )
RMSE £ R® RMSE £ R? RMSE E R® RMSE £ R? vegetation model
Fixed homoscedastic error model inversions (HO1) g
mi 5560 —7402 5248 —8284 2 J. Minet et al.
GPP [gC m~2 day'1] 1.797 0726 0.791 2.231 0.600 0.757 1.742 0.755 0.831 2.151 0.521 0.751 %
RECO[gCm™day™'] 1498 0502 0695 1.269 0772 0.803 1.036 0832 0878 1529 0688 0.743 o
ET [mm] 0.623 0.309 0.565 0.670 0.612 0.758 0.500 0.784 0.849 1.128 0.144 0.474 >
NEE [ng'2 day"] 1.774 -0.185 0.335 2.044 -0.115 0.449 1424 -0.018 0.463 2.153 -0.382 0.219 3 _
Fixed heteroscedastic error model inversions (HE1) 8
Rk
GPP [gCm™2day™"] 2394 -0.018 0.706 2405 0.353 0.767 1932 0585 0.814 2679 0.001 0.695 —
RECO[gCm™day™'] 1.977 -0.802 0.634 1.346 0709 0791 1281 0641 0869 1638 0503 0.727 - -
ET [mm] 0597 0.329 0597 0665 0582 0784 0488 0.781 0.854 1.122 0.031 0.498 )
NEE [ng'2 day"] 1854 -1491 0.198 2.086 -0.908 0.443 1.450 -0.501 0429 2.138 -1.414 0.201 g - -
Inferred homoscedastic error model inversions (HO2) %
GPP [gC m=2 day'1] 1733 0.728 0.799 2.194 0.606 0.767 1.746 0.718 0.841 2123 0.635 0.740 =]
RECO[gCm™day™'] 1.560 0.393 0.673 1.300 0773 0.796 1.037 0837 0876 1561 0523 0.739 "
ET [mm] 0.616 0.316 0573 0.664 0.608 0.767 0.498 0.784 0.850 1.282 0.222 0.394 % - -
NEE [ng'2 day“] 1713 -0.139 0.367 2.034 -0.191 0.453 1.399 -0.332 0.478 2052 -0.174 0.263 Q
Inferred heteroscedastic error model inversions (HE2) - -
GPP [gC m~2 day'1] 1929 0.669 0.744 2306 0467 0.762 1.875 0.645 0811 2225 0475 0.737 )
RECO [gC m~2 day'1] 1.751 0.344 0582 1350 0.758 0.781 1.244 0661 0.869 1.674 0.621 0.702 3
ET [mm] 0.574 0.403 0.629 0.663 0.589 0.781 0.492 0.784 0.852 1.283 0.221 0.393 2 _
NEE [ng'2 day"] 1.652 0.002 0.384 2071 -0.595 0.443 1452 -0.246 0.433 2217 -0.749 0.200 8
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Table 5. Most likely SD of the residual errors (HO2) and parameters of Eq. (7) (HE2).

Grillenburg  Oensingen

Monte-Bondone Laqueuille

Inferred homoscedastic inversions (HO2)

Ogpp 1.81 2.29 1.79 2.22
OReco 1.63 1.33 1.09 1.62
Oet 0.632 0.682 0.519 1.31
Inferred heteroscedastic inversions (HE2)

agpp 0.211 0.65 0.336 1.09
areco 0.12 0.334 0.162 0.514
agt 0.246 0.255 0.316 0.818
bepp 0.406 0.297 0.423 0.239
breco 0.411 0.206 0.283 0.233
ber 0.273 0.255 0.12 0.175
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Table 6. Validation of the model calibration, with most likely parameter values from the inver-
sions with the inferred homoscedastic error model (inversion HO2).

Grillenburg Oensingen Monte-Bondone Laqueuille
RMSE E R?> RMSE E R?> RMSE E R? RMSE E R?
GPP[gCm™2day™'] 2651 0516 0.663 3.008 0520 0571 2315 0690 0765 2730 0.437 0.705
RECO[gCm™2day™'] 1.335 0749 0777 1.614 0713 0735 1.398 0730 0.849 2.050 0.284 0.646
ET [mm] 0.639 0525 0.603 0.710 0682 0.705 0.502 0.841 0.850 1.364 -0.003 0.353
NEE [gCm~2day™'] 2.010 0.082 0451 2337 0045 0203 1598 0.393 0414 2047 0200 0.309
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Figure 2. Posterior distributions of the CARAIB model parameters sampled by the DREAM g,
algorithm, inferred homoscedastic error model (HO2 inversions), for all sites. The default values
(see Table 2) are depicted with a cross and the most likely values with a star. The x axes cover

the whole prior ranges.
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Figure 3. Measured and modelled GPP [gCm™2day”'] (a), RECO [gCm™2day™'] (b), ET
[mmday'1] (c¢) and NEE [ng'zday'1] (d) at the Monte-Bondone site for the inferred ho-
moscedastic error model (inversion HO2). The ranges of the prediction uncertainty due to pa-
rameter uncertainties and the 95 % total predictive uncertainty are depicted by the dark and
light grey shaded areas, respectively. Vertical arrows indicate the dates of the grass cutting.
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Figure 4. Measured and modelled GPP [gCm™2day™'] for the Grillenburg (a), Oensingen (b)
and Laqueuille (¢) experimental sites. See Fig. 3a for Monte-Bondone. The ranges of the pre-
diction uncertainty due to parameter uncertainties and the 95 % total predictive uncertainty are
depicted by the dark and light grey shaded areas, respectively. Vertical arrows indicate the
dates of the grass cutting (Grillenburg and Oensingen) and horizontal arrows the periods of
grazing (Laqueuille).
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Figure 5. Measured and modelled GPP [ng'2 day'1] at the Monte-Bondone site in 2004 for
the fixed homoscedastic HO1 (a) and heteroscedastic HE1 (b), inferred homoscedastic HO2
(c) and heteroscedastic HE2 (d) inversions. The measured GPP is depicted with a constant
(a) and variable (b) uncertainty range. For the HO2 and HE2 inversions, the 95 % confidence
interval total predictive uncertainty is depicted using the light grey shaded areas. Standardised
residuals and partial autocorrelation of residuals of GPP over the full simulation period are
depicted at the right of each graph.
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Figure 6. Posterior distributions of the specific leaf area SLA (dashed line) and characteristic
mortality time in stress conditions 7 (plain line) for the 4 sites (HO2 inversions values) classified
as a function of increasing aridity by the De Martonne index (grey bars). The mean of the
posterior distributions and the most likely parameter values are depicted with a circle and a star,
respectively. The errorbars stand for one SD around the mean.
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